Electric Currents in Multiply Connected Spaces

Theodore Frankel 1

Received January 29, 1988

It is shown that the topology of 3-space determines whether or not a current can be maintained in a wire loop.

1. INTRODUCTION

It is commonplace that one can maintain a current in a wire loop C by using, say, replaceable batteries or a superconducting wire. It is rather surprising, then, that this is possible only because ordinary space $R³$ has a very simple *topology*; every closed curve C in $R³$ has 0 intersection number with each closed 2-sided surface. I investigate here the problems that occur in maintaining a current in a multiply connected space. Such spaces are allowed by general relativity (indeed, we may live in one), and appear in other aspects of physics, e.g., when one replaces R^3 by the 3-torus T^3 when considering periodic boundary conditions.

In Figure 1, the curve C has 0 intersection number with each closed surface but C^* does not.

I emphasize that I am considering solutions of Maxwell's equations in a given background space-time.

2. SOME DEFINITIONS

See Frankel (1979) and Misner *et aL* (1973) for the use of differential forms in electromagnetism. In the present work, however, I use the term "pseudo" as a replacement for "twisted" in Frankel. d denotes the *spatial* exterior differential.

Maxwell's equations are

$$
\mathbf{d}\mathcal{E}^1 = -\partial\mathcal{B}^2/\partial t, \qquad \mathbf{d}\mathcal{B}^2 = 0
$$

$$
\mathbf{d}\mathcal{H}^1 = 4\pi j^2 + \partial\mathcal{D}^2/\partial t, \qquad \mathbf{d}\mathcal{D}^2 = 4\pi\sigma \,dx \wedge d\gamma \wedge dz
$$

¹Department of Mathematics, University of California-San Diego, La Jolla, California 92093.

995

996 Frankei

I consider a space-time M^4 of the form $R \times V^3$ having a global time function t. The submanifolds $V(t_0)$ defined by $t = t_0$ are the spatial sections. The global vector field

$$
\partial/\partial t
$$
 := (grad *t*)/ $||$ grad *t* $||^2$

generates time translations $\phi_t : V(t_0) \mapsto V(t_0 + t)$.

Now let W^2 be a 2-sided surface (with given spatial normal N) sitting in the spatial section $t = 0$, and consider time translates $W_t = \phi_t(W)$. We say that a current through W is *maintained* for time T if the current 2-form i^2 satisfies

$$
\left| \int_{W(t)} j^2 \right| = \left| \int_{W(t)} \langle \mathbf{J}, N \rangle \, \mathrm{d}S \right| \ge \varepsilon > 0
$$

for some ε and for all $0 \le t < T$. In the case of a current-carrying wire, this reduces to the usual concept if we let W be a cross section of the wire.

If V has local coordinates x^1 , x^2 , x^3 , then these coordinates and $t = x^0$ can be used as coordinates in M. The ϕ_t keeps spatial coordinates constant. M has a metric of the form

$$
ds^{2}=g_{00}(t,\mathbf{x}) dt^{2}+\sum_{\alpha,\beta=1}^{3} g_{\alpha\beta}(t,\mathbf{x}) dx^{\alpha} dx^{\beta}
$$

We say that M is a *conformally static* universe if this metric can be written in the form

$$
ds^{2}=G^{2}(t, \mathbf{x})[-dt^{2}+\sum h_{\alpha\beta}(\mathbf{x}) dx^{\alpha} dx^{\beta}]
$$

where $h_{\alpha\beta}$ is a function only of x. This not only includes static spaces [where $G^{2} = -g_{00}(x)$, but also Friedmann universes [where $G(t, x) = G(t)$ is a function of t alone and $h_{\alpha\beta} dx^{\alpha} dx^{\beta}$ is a metric of constant curvature].

3. SOME CONSEQUENCES OF MAXWELL'S EQUATIONS

Consider an M^4 with an electromagnetic field and a current 2-form i^2 (j is actually a *pseudo* form; a change of spatial orientation will send j into its negative).

Theorem 1. If W is a closed 2-sided surface whose area is bounded in time, then no current flux through W can be maintained for an infinite time.

Proof. Assume a current can be maintained. Choose the normal N to **W** so that

$$
\int_{W(t)} j^2 \le -\varepsilon < 0 \qquad \text{for} \quad t \ge 0
$$

Let \mathcal{H}^1 be the magnetic pseudo 1-form and \mathcal{D}^2 the electric pseudo 2-form. From Ampere-Maxwell

$$
\int_{W(t)} 4\pi j + \int_{W(t)} \partial \mathcal{D}/\partial t = \oint_{\partial W(t)} \mathcal{H} = 0
$$

since W has no edge, $\partial W = 0$. Since W is spatially fixed,

$$
d/dt \int_{W(t)} \mathcal{D} = \int_{W(t)} \partial \mathcal{D}/\partial t = -4\pi \int_{W(t)} j \ge 4\pi\varepsilon
$$

for all $t > 0$. This would imply that

$$
\int_{W(t)} \mathcal{D} \ge \text{const} + 4\pi \varepsilon t
$$

Thus, if the current flux through W could be maintained for an infinite time, we would have

$$
\int_{W(t)} \mathcal{D} \to \infty
$$

Since W has bounded area, E would blow up on W , a physical impossibility. (As pointed out to me by W. Thompson, the increasing E field would make it increasingly difficult to maintain the current.) \blacksquare

Theorem 2. Let M be a conformally static universe (see definition above) and let C be a spatial wire loop that has 0 intersection number with every closed 2-sided surface in the spatial section V. Then a current in C can be maintained for the lifetime of the universe. (More precisely, there exists a solution of Maxwell's equations with $E=0$, charge density zero, and where the current is constant and supported in the wire C.)

Proof. We shall need some lemmas.

Lemma 1. Let C be a closed curve in a 3-manifold V. There exists a closed pseudo 2-form *i* whose support lies in an ε -tube centered on C and whose flux through a cross section of this "wire" is positive. If C has intersection number 0 with each closed 2-sided surface in V, then there is a global (pseudo) 1-form $\mathcal H$ such that

$$
d\mathcal{H}^1 = 4\pi j^2 \qquad \text{and} \qquad d^* \mathcal{H} = 0
$$

Proof. Suppose first that V^3 is orientable. Then the normal bundle to C is trivial; one can find a smooth pair of orthonormal vector fields e_1, e_2 along C that are orthogonal to C . Then we can introduce "cylindrical" coordinates z, r, θ in some tubular neighborhood $r \leq \varepsilon$ of C; z, r, θ is the unique point of V that is the endpoint of the geodesic segment of length r that leaves the curve C at parameter z , is orthogonal to C , and makes an angle θ with the first vector e_1 . Now introduce a "bump function" $\rho(r)$ vanishing for $r \ge \varepsilon/2$ and put

$$
j^2 = \rho(r) \, dr \wedge d\theta \tag{1}
$$

This 2-form vanishes for $r \ge \varepsilon/2$ and can be extended to all of V by making it vanish outside of the wire. Certainly *j* is closed, $dj = 0$. We may also choose ρ so that

$$
\int \rho(r) dr d\theta = 1
$$
 (2)

When V is not orientable and the normal bundle to C is not trivial, we may still arrange to have e_1 return to itself while e_2 returns to its negative after going around C. In this case there is an ambiguity $\pm \theta$. But this simply means that the form j^2 defined in (1) is a *pseudo* form (as indeed it must be if it is to represent a current). We have proved the first part of Lemma 1.

If W^2 is a closed, 2-sided surface in V, we may always move W slightly so that this ε -tube strikes W "transversely." Then, from (2), we conclude that

$$
\int_W j^2
$$

is simply the intersection number of C with *W,* which vanishes by assumption. Thus, all the "periods" of the closed form i^2 vanish, and we conclude from de Rham's theorem that the form j is in fact exact,

$$
4\pi i^2 = d\mathcal{H}^{\dagger}
$$

Maintaining Currents 999

for some pseudo 1-form \mathcal{H}^{\sim} . By the usual process of adding the differential of a function to \mathcal{H}^- and solving Poisson's equation, we may change \mathcal{H}^- to a 1-form \mathcal{H}^1 that satisfies $d(*\tilde{\mathcal{H}}^1) = 0$. [This is possible even in a closed V, since the integral of $d(*\mathcal{H}^{\frown})$ over V vanishes.]

Lemma 2. Consider the 3-manifold V of Lemma 1 as the spatial section of a static universe $R \times V^3$ with metric

$$
ds^{2} = -dt^{2} + \sum_{\alpha,\beta=1}^{3} h_{\alpha\beta}(\mathbf{x}) dx^{\alpha} dx^{\beta}
$$
 (3)

where h is the metric on V . Then if we consider the time-independent forms i^2 and \mathcal{H}^1 as being the current and magnetic field forms on $R \times V$, Maxwell's equations are satisfied on $R \times V$ if we put charge density and electric field E equal to 0.

Proof. $\mathcal{B}^2 = \frac{a}{4}(-\mathcal{H}^1 \wedge dt)$, where the * operator is that for $R \times V^3$. Then $\partial \mathscr{B}/\partial t = 0$ follows from the time independence of \mathscr{H}^1 and of $g_{00} = -1$, and $d\mathcal{B}^2=0$ follows from $d^*\mathcal{H}^1=0$ and $g_{00}=-1$.

Proof of Theorem 2. We have proven this in the case of a metric of the form (3). But a conformally static metric is conformal to (3) and Maxwell's equations are conformally invariant. \blacksquare

4. SOME CONCLUDING REMARKS AND QUESTIONS

The behavior of *current* fluxes contrasts strongly with that of *magnetic* fluxes. A nontrivial magnetic flux through a closed surface (which is possible in topologically complex spaces) is, in the absence of singularities, constant in time. This is an immedaite consequence of Faraday's law. This shows that *if the magnetic field can be made to vanish (say, by turning off the current in a circuit), then all the magnetic fluxes must have been zero and consequently this field must have admitted a global vector potential A.*

I wish to point out that while I have shown how to maintain a current in a conformally static universe, *[do not know if this result holds in a general space-time.* In a nonstatic space time one would expect an electric field to be generated, making it more difficult to satisfy Maxwell's equations for the entire lifetime of the universe.

I also should emphasize that Theorem 2 is simply a mathematical existence theorem; one shows the existence of a field (with $E = 0$) compatible with a mathematically constructed current. *I have not investigated how such* a current and resulting field could be initiated!

REFERENCES

Frankel, T. (1979). *Gravitational Curvature,* Freeman, San Francisco. Misner, C., Thorne, K., and Wheeler, J. (1973). *Gravitation,* Freeman, San Francisco.